Tetrahedron Letters No. 37, pp 3627 - 3630, 1973. Pergamon Press. Printed in Great Britain.

4-SUBSTITUTED QUINUCLIDINIUM PERCHLORATES IN THE DETERMINATION OF POLAR SUBSTITUENT EFFECTS

E. Ceppi, W. Eckhardt and C.A. Grob*

Institute of Organic Chemistry, University of Basel, Switzerland

(Received in UK 10 July 1973; accepted for publication 3 August 1973)

The superiority of 4-substituted quinuclidines over other models for the determination of polar substituent constants by pK_a measurements of corresponding salts has been recognized for some time ^{1) 2) 3)}. Now that these compounds are more easily accessible ³⁾ measurements can be carried out on a broader basis. The following Table lists the pK_a values of the quinuclidinium per-chlorates (I) measured to date in our laboratory ⁴⁾.

0.1 millimole of the salt in 10 ml of water were titrated with 0.1 N NaOH at 25° C (\pm 0.05°) under N₂ employing a precision pH-compensator (Metrohm E 388) and a glass electrode (Metrohm EA 109/UX). From the concentration of the salt c and the ml of added 0.1 N NaOH the pK_a values were calculated by the formula:

$$pK_{a} = pH + \log \frac{c((0.1 - 0.1 \times m1)/0.1) - [H^{+}] + [OH^{-}]}{c(0.1 \times m1/0.1) + [H^{+}] - [OH^{-}]}$$

The standard deviation corrected for a confidence limit of 99 % was computed from an average of 20 points. Duplicate runs gave pK_a values within the above limits of ca. \pm 0.02.

Nr.	R	рК _а	$pK_a^R - pK_a^H$
1	н	10.96 <u>+</u> 0.02	
2	CH3	10.88 <u>+</u> 0.03 ^{a)}	-0.08
3	CH ₂ CH ₃	10.95 <u>+</u> 0.03 ^{a)}	-0.01
4	CH(CH ₃) ₂	$11.02 \pm 0.04 a$	0.06
5	с(сн ₃) ₃	11.07 <u>+</u> 0.03 ^{a)}	0.11
6	CH=CH ₂	10.60 <u>+</u> 0.01	-0.36
7	° ₆ ^H 5	10.20 <u>+</u> 0.04	-0.76
8	сн ₂ он	10.45 <u>+</u> 0.01	-0.51
9	CH ₂ OCH ₃	10.50 <u>+</u> 0.01	-0.46
10	сн ₂ ососн ₃	10.27 <u>+</u> 0.03	-0.69
11	CH ₂ OTs ^{b)}	9.87 <u>+</u> 0.03	-1.09
12	CH2CI	10.19 <u>+</u> 0.02	-0.77
13	CH_2Br	10.13 <u>+</u> 0.02	-0.83
14	CH ₂ J	10.12 <u>+</u> 0.02	-0.84
15	CH(OH) ₂	9.90 <u>+</u> 0.03 ^{c)}	-1.06
16	coo ⁻	10.55 ± 0.02 ^{d)}	-0.41
17	COOCH3	9.46 <u>+</u> 0.02	-1.50
18	COOC ₂ H ₅	9.44 <u>+</u> 0.01	-1.52
19	сосн	9.45 <u>+</u> 0.01	-1.51
20	CONH ₂	9.38 <u>+</u> 0.01	-1.58
21	CN	8.07 <u>+</u> 0.01	-2.89

a) literature ref. 3 and 5

b) Ts = $p-CH_3C_6H_4SO_2$

c) the corresponding aldehyde is completely hydrated

d) pK_a^1 of the carboxylic acid is 3.64 \pm 0.03

3628

Table continued

Nr.	R	^{pK} a	$pK_a^R - pK_a^H$
22	ОН	9.44 <u>+</u> 0.01	-1.52
23	OCH3	9.31 <u>+</u> 0.01	-1.65
24	ососнз	8.99 <u>+</u> 0.01	-1.97
25	Cl	8.62 <u>+</u> 0.01 ^{e)}	-2.34
26	Br	8.49 <u>+</u> 0.02 ^{e)}	-2.47
27	J	8.70 <u>+</u> 0.03 ^{e)}	-2.26
28	NH2	10.10 <u>+</u> 0.02 ^f)	-0.86
29	NHCH3	10.28 <u>+</u> 0.02 ^{g)}	-0.68
30	N(CH ₃) ₂	10.11 <u>+</u> 0.03 ^{h)}	-0.85
31	NHCOCH3	9.54 <u>+</u> 0.01	-1.42
32	NHCOOC2H5	9.57 <u>+</u> 0.01	-1.39
33	NO ₂	7.65 <u>+</u> 0.02	-3.31

- e) due to fragmentation of the free base only part of the titration curve can be used.
- f) pK_a^1 of the bis-hydroperchlorate 6.92 \pm 0.02.
- g) pK_a^1 of the bis-hydroperchlorate 7.03 \pm 0.02.
- h) pK_a^1 of the bis-hydroperchlorate 6.57 \pm 0.02.

Column 4 of the Table lists values of $pK_a^R - pK_a^H$, the difference between the pK_a of the 4-substituted and the unsubstituted quinuclidine perchlorate. A negative sign indicates an electron withdrawing -I effect relative to hydrogen, a positive sign an electron repelling +I effect. The following facts are readily discernible from the Table:

- a) The range of pK_a values covers 3.42 pK_a units i.e., from 11.07 for the weakest conjugate acid (I, R = t.butyl, Nr. 5) to 7.65 for the strongest conjugate acid (I, R = NO₂, Nr. 33).
- b) Only the isopropyl (Nr. 4) and t.butyl group (Nr. 5) are distinctly electron repelling relative to hydrogen, as noted previously ⁵⁾.
- c) The vinyl (Nr. 6) and the phenyl group (Nr. 7) have marked -I effects, the latter being twice as large as the first.
- d) The -I effects of an ester, acetyl and amide group (Nr. 17 20) are roughly equal.
- e) In spite of its negative charge the carboxylate group (Nr. 16) has an acidstrength ening -I effect.
- f) The -I effects of halogens increase in the order I < Cl < Br. (Nr. 25 27), in the CH₂Hal series Cl < Br ~ I (Nr. 12 - 14).</p>
- g) The OCH₃ group is more electron withdrawing than OH (Nr. 22 and 23). In the case of CH_2OCH_3 and CH_2OH the order is reversed (Nr. 8 and 9).
- h) The -I effect of some representative groups increases in the order H ~ alkyl < -CH=CH₂ < CH₂Cl ~ C₆H₅ < NH₂ < COOAlk ~ OH < CONH₂ < Cl < CN < NO₂.

A full account of this work will be given elsewhere.

References

- 1) Ph D. thesis Dieter Treffert, Basel University 1969.
- 2) J. Paleček and J. Hlavaty, Z. Chem. 9, 428 (1969).
- 3) W. Eckhardt, C.A. Grob u. D. Treffert, Helv. Chim. Acta 55, 2432 (1972).
- The pK_a values of six known 4-substituted quinuclidines have been measured by J. Paleček and J. Hlavaty, ref. 2.
- C.A. Grob, W. Simon u. D. Treffert, Angewandte Chemie, intern. Edition <u>12</u>, 319 (1973).